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. Introduction 

In recent years, the investigation of exact solutions to nonlinear

artial differential equations (NPDEs.) has played an important role

n nonlinear phenomena. Nonlinear phenomena appear in a wide

ariety of scientific applications such as plasma physics, solid state

hysics and fluid dynamics .In order to better understanding these

onlinear phenomena, many mathematicians as well as physicists

ave been made big effort s to seek more exact solutions to NPDEs.

herefore, several powerful methods have been proposed to ob-

ain exact solutions of nonlinear equations, such as inverse scatter-

ng method [1] , Backlund transformation method [2] , Hirota direct

ethod [3,4] , tanh-sech method [5–7] , extended tanth method [8–

0] , (G 

′ /G, 1 /G ) - expansion method [11] , modified simplest equa-

ion method [12,13] , homogeneous balance method [14,15] , Jacobi

lliptic function expansion method [16] , F- expansion method [17] ,

he transformed rational function method [18] and others. 
∗ Tel.: + 201113548951. 

E-mail address: shoukryelganaini@yahoo.com 

⎨
⎪⎪⎪⎪⎪⎪⎩

ttp://dx.doi.org/10.1016/j.joems.2016.06.002 

110-256X/Copyright 2016, Egyptian Mathematical Society. Production and hosting by Else

 http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
The first integral (FI) method was first proposed by Feng in

19] in solving Burgers-KdV equation which is based on the ring

heory of commutative algebra. Recently, this useful method has

een widely used by many authors such as [20–25] and by the

eferences therein. 

The variational approaches such as Ji-Huan He semi-inverse

ariational (SIV) method [26] is a powerful mathematical tool for

earching the variational principles of nonlinear physical systems

rom the field equations without using Lagrange multipliers. 

Yong et al. [27] , have studied the following new coupled non-

inear Schrodinger type (CNLST) equation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u x t = u xx + 

2 

1 − β2 
| u | 2 u + u (v − w ) , 

v t = − (| u | 2 ) t 
1 + β

+ (1 + β) v x , 

w t = 

(| u | 2 ) t 
1 − β

+ (1 − β) w x , 
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by using the truncated singular expansions and direct quadrature

method to obtain exact solutions of this equation. 

The new coupled nonlinear Schrodinger type (CNLST)

Eq. (1) was proposed in (2009) by Ma and Geng via spectral

problem and its auxiliary one [28] . In this present paper, we

aim to extend the previous works made in [27] , to extract more

exact solutions of the new coupled nonlinear Schrodinger type

(CNLST) Eq. (1) via two distinct algorithms, namely the first

integral(FI) method combined with Liu’s theorem and Ji-Huan He’s

semi-inverse variational (SIV) method. 

The layout of this paper is as follows: in Section 2 we present

basic algorithm of the first integral (FI)method .In Section 3 , ap-

plication to the new coupled nonlinear Schrodinger type (CNLST)

Eq. (1) is considered. Also, the algorithm of semi-inverse varia-

tional (SIV) method combined with its application to the consid-

ered equation are presented in Sections 4 and 5 . The graphics of

the obtained solutions accompanied with their explanations have

been added in Section 6 . Section 7 is devoted to some conclusions.

2. Algorithm of the FI method 

Consider a general nonlinear partial differential equation (non-

linear PDE) in the form 

F (u, u t , u x , u xx , u tt , u xt , u xxx , . . . ) = 0 , (2)

where u = u (x, t) is the solution of this nonlinear PDE ( 2 ). 

We use the traveling wave transformation 

u (x, t) = u (ξ ) , (3)

where ξ = x − λ t + ξ0 , and ξ0 is an arbitrary constant. This en-

ables us to use the following changes: 

∂ 

∂ t 
(•) = −λ

∂ 

∂ ξ
(•) , ∂ 

∂ x 
(•) = 

∂ 

∂ ξ
(•) , 

∂ 2 

∂ x 2 
(•) = 

∂ 2 

∂ ξ 2 
(•) , · · · . (4)

Using Eq. (4) , the nonlinear PDE ( 2 ) is transformed to the non-

linear ordinary differential equation (nonlinear ODE) 

G (u (ξ ) , ∂ u (ξ ) /∂ξ , ∂ 2 u (ξ ) /∂ ξ 2 , . . . ) = 0 . (5)

Next, we introduce new independent variables 

X (ξ ) = u (ξ ) , Y (ξ ) = ∂ u (ξ ) /∂ξ , (6)

which lead to a system of nonlinear ODEs.: 

∂ X (ξ ) /∂ ξ = Y (ξ ) (7a)

∂ Y (ξ ) /∂ ξ = F (X (ξ ) , Y (ξ )) (7b)

According to the qualitative theory of ordinary differential

equations [29] , if we can find two first integrals to system (7) un-

der the same conditions, then analytic solutions to Eqs. (7a) and

(7b) can be solved directly. However, in general, it is difficult to

realize this even for one first integral, because for a given plane

autonomous system, there is no systematic theory that can tell us

how to find its first integrals, nor is there a logical way for telling

us what these first integrals are. 

We will apply the Division theorem to obtain one first integral

to Eqs. (7a) and (7b) which reduces Eq. (5) to a first order inte-

grable ODE. An exact solution to Eq. (2) is then obtained by solving

this equation. 

For convenience, first let us recall the Division theorem. 

Theorem 1 (Divison theorem) . Suppose that P (w, z) and Q(w, z)

are polynomials in C(w, z) and P (w, z) is irreducible in C(w, z) . If
(w, z) vanishes at all zero points of P (w, z) , then there exists a poly-

omial G (w, z) in C(w, z) such that 

(w, z) = P (w, z) G (w, z) . (8)

The Division theorem follows immediately from the Hilbert–

ullstellensatz Theorem [30] , namely, 

heorem 2 (Hilbert – Nullstellensatz theorem) . Let k be a field and

 an algebraic closure of k. 

1) Every ideal γ of k [ X 1 , ..., X n ] not containing 1 admits at least

one zero in L n 

2) Let x = ( x 1 , ..., x n ) , y = ( y 1 , ..., y n ) be two elements of L n ; for

the set of polynomials of k [ X 1 , ..., X n ] zero at x to be identical

with the set of polynomials of k [ X 1 , ..., X n ] zero at y , it is nec-

essary and sufficient that there exists a k −automorphism s of L

such that y i = s ( x i ) for 1 ≤ i ≤ n. 

3) For an ideal α of k [ X 1 , ..., X n ] to be maximal, it is necessary and

sufficient that there exists an x in L n such that α is the set of

polynomials of k [ X 1 1 , ..., X n ] zero at x. 

4) For a polynomial Q of k [ X 1 , ..., X n ] to be zero on the set of zeros

in L n of an ideal γ of k [ X 1 , ..., X n ] , it is necessary and sufficient

that there exists an integer m � 0 such that Q 

m ∈ γ . 

heorem 3 (Liu’s theorem [31] ) . If Eq. (2) has a kink-type solution 

 (ξ ) = Q � ( tanh [ A (ξ + ξ0 )]) , (9)

then, it has certain kink-bell - type solution 

 (ξ ) = Q � ( tanh [2 A (ξ + ξ0 )] ± i sec h [2 A (ξ + ξ0 )]) , (10)

here Q � is a polynomial of degree k, i is the imaginary number,

amely, i = 

√ −1 . 

. Application 

The authors in [27] have taken the traveling wave transforma-

ion [32] 

 = φ(ξ ) e i (k x −ω t) , v = V (ξ ) , w = W (ξ ) , 

= x − λ t + ξ0 , (11)

here ξ0 is an arbitrary constant. Conducting the analysis made

n [27] on the new coupled nonlinear Schrodinger type (CNLST)

q. (1) , thus, the following results have been obtained as 

 (ξ ) = − λ φ2 

(β + 1)(β + λ + 1) 
, W (ξ ) = 

λ φ2 

(β − 1)(β − λ − 1) 

(12)

nd the reduced nonlinear ODE 

′′ = −k 2 φ − 2 

(λ + 1 + β) (λ + 1 − β) 
φ3 (13)

here / : = d /d ξ . 

Therefore, we are concerned to solve the Lienard Eq. (13) . 

By introducing new independent variables X = φ(ξ ) and Y =
′ (ξ ) and using ( 6 ), we get a system of nonlinear ODEs 

 

′ (ξ ) = Y (ξ ) (14a)

 

′ (ξ ) = (− k 2 ) X (ξ ) −
(

2 

(λ + 1 + β) (λ + 1 − β) 

)
X 

3 (ξ ) . (14b)

According to the first integral method, we suppose that X(ξ )

nd Y (ξ ) are the nontrivial solutions of ( 14a ) and ( 14b ), and 

(X, Y ) = 

m ∑ 

i =0 

a i (X ) Y i , (15)
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a

s an irreducible polynomial in the complex domain C [ X, Y ] such

hat 

(X (ξ ) , Y (ξ )) = 

m ∑ 

i =0 

a i (X (ξ )) Y i (ξ ) = 0 , (16)

here a i (X ) , (i = 0 , 1 , 2 , ..., m ) are polynomials of X and

 m 

(X ) � = 0 . 

Eq. (16) is called the first integral to ( 14a ) and ( 14b ). Due to the

ivision Theorem, there exists a polynomial h (X ) + g(X ) Y , in the

omplex domain C [ X, Y ] such that 

dQ 

dξ
= 

d Q 

d X 

d X 

d ξ
+ 

d Q 

d Y 

d Y 

d ξ
= ( h ( X ) + g ( X ) Y ) 

( 

m ∑ 

i =0 

a i ( X ) Y i 

)

(17) 

Here, we take two distinct cases, assuming that m = 1 and

 = 2 in Eq. (16) . 

Case I: Suppose that m = 1 , by equating the coefficients of

 

i (i = 2 , 1 , 0) on both sides of ( 17 ), we have 

 

′ 
1 (X ) = g (X ) a 1 (X ) (18a)

 

′ 
0 (X ) = h (X ) a 1 (X ) + g(X ) a 0 (X ) (18b)

 1 (X ) 
[ 
(−k 2 ) X (ξ ) −

(
2 

(λ + 1 + β) (λ + 1 − β) 

)
X 

3 (ξ ) 
] 

= h (X ) a 0 (X ) (18c) 

Since, a i (X )(i = 0 , 1) are polynomials, then from ( 18a ) we con-

lude that a 1 (X ) is a constant and g(X ) = 0 . For simplicity, we take

 1 (X ) = 1 , and balancing the degrees of h (X ) and a 0 (X ) we con-

lude that deg (h (X )) = 1 , only. 

Now, suppose that h (X ) = A X + B ,and A � = 0 , then we find

 0 (X ) 

 0 (X ) = 

1 

2 

A X 

2 + BX + D, (19)

where D is an arbitrary integration constant. 

Substituting a 0 (X ) , a 1 (X ) and h (X ) into ( 18c ), and setting all

he coefficients of powers X to be zero, then we obtain a system

f nonlinear algebraic equations and by solving it via Mathematica

, we obtain 

 = 

1 

2 

k 2 
√ 

β2 − (1 + λ) 
2 
, A = − 2 √ 

β2 − (1 + λ) 
2 
, B = 0 

(20a) 

 = − 1 

2 

k 2 
√ 

β2 − (1 + λ) 
2 
, A = 

2 √ 

β2 − (1 + λ) 
2 
, B = 0 (20b)

Setting ( 20a ) in ( 16 ) leads to 

 (ξ ) = 

1 √ 

β2 − (1 + λ) 
2 

X 

2 (ξ ) − 1 

2 

k 2 
√ 

β2 − (1 + λ) 
2 

(21) 

Combining (21) with (14a) , a first-order ODE is derived, then by

olving this derived equation, we obtain the exact solution to (13) .

hus, the traveling wave solution of the CNLST Eq. (1) is obtained

nd can be written as 

 

 

 

 

 

 

 

 

 

u 1 (x, t) = − (k R 1 / 
√ 

2 ) tanh ((k/ 
√ 

2 )[ x − λt + ξ0 − 2 R 1 ς ]) 

× exp [ i (k x − ωt)] 

v 1 (x, t) = −(λk 2 R 

2 
1 / 2 S 1 ) tanh 

2 
( (k/ 

√ 

2 )[ x − λt + ξ0 − 2 R 1 ς ] ) 

w 1 (x, t) = (λk 2 R 

2 
1 / 2 N) tanh 

2 
( (k/ 

√ 

2 )[ x − λt + ξ0 − 2 R 1 ς ] ) 

(22) 
here ς is an arbitrary constant. 

Therefore, by using Liu’s Theorem 3 , we get another traveling

ave solutions as 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u 2 (x, t) = − (k R 1 / 
√ 

2 ) 

×
[ 

tanh ( ( 2 k/ 
√ 

2 )[ x − λt + ξ0 − 2 R 1 ς ] ) 

±i sec h ( ( 2 k/ 
√ 

2 )[ x − λt + ξ0 − 2 R 1 ς ] ) 

] 

× exp [ i (k x − ω t)] 

v 2 (x, t) = −(λk 2 R 1 
2 
/ 2 S 1 ) [ 

tanh ( ( 2 k/ 
√ 

2 )[ x − λt + ξ0 − 2 R 1 ς ] ) 

±i sec h ( ( 2 k/ 
√ 

2 )[ x − λt + ξ0 − 2 R 1 ς ] ) 

] 2 

w 2 (x, t) = (λ k 2 R 1 
2 
/ 2 N) 

×
[ 

tanh ((2 k/ 
√ 

2 )[ x − λt + ξ0 − 2 R 1 ς ]) 

±i sec h ( ( 2 k/ 
√ 

2 )[ x − λt + ξ0 − 2 R 1 ς ] ) 

] 2 

(23) 

here, 

 1 = 

√ 

β2 − (1 + λ) 
2 
, S 1 = (β + 1)(β + λ + 1) , 

 = (β − 1)(β − λ − 1) , (24) 

and ς is an arbitrary integration constant. 

Similarly, in the case of (20b) , from (16) , we obtain 

 (ξ ) = − 1 √ 

β2 − (1 + λ) 
2 

X 

2 (ξ ) + 

1 

2 

k 2 
√ 

β2 − (1 + λ) 
2 

(25)

Combining (25) with (14a) , we obtain the exact solution to

13) and therefore, the traveling wave solution of the CNLST

q. (1) are found as 

 

 

 

 

 

 

 

 

 

u 3 (x, t) = −(k R 1 / 
√ 

2 ) tanh ( (k/ 
√ 

2 )[ x − λt + ξ0 + 2 R 1 ς ] ) 

× exp [ i (k x − ω t)] 

v 3 (x, t) = −(λk 2 R 

2 
1 / 2 S 1 ) tanh 

2 
( (k/ 

√ 

2 )[ x − λt + ξ0 + 2 R 1 ς ] ) 

w 3 (x, t) = (λk 2 R 

2 
1 / 2 N) tanh 

2 
( (k/ 

√ 

2 )[ x − λt + ξ0 + 2 R 1 ς ] ) 

(26) 

ence, via Liu’s Theorem 3 , we also have 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u 4 (x, t) = −(k R 1 / 
√ 

2 )[ tanh ( (2 k/ 
√ 

2 )[ x − λt + ξ0 + 2 R 1 ς ] ) 

±i sec h ((2 k/ 
√ 

2 )[ x − λt + ξ0 + 2 R 1 ς ])] 

× exp [ i (k x − ω t)] 

v 4 (x, t) = −(λk 2 R 1 
2 
/ 2 S 1 ) [ tanh ( (2 k/ 

√ 

2 )[ x − λt + ξ0 + 2 R 1 ς ] ) 

±i sec h ( ( 2 k/ 
√ 

2 )[ x − λt + ξ0 + 2 R 1 ς ] )] 2 

w 4 (x, t) = (λk 2 R 1 
2 
/ 2 N) [ tanh ((2 k/ 

√ 

2 )[ x − λt + ξ0 + 2 R 1 ς ]) 

±i sec h ( ( 2 k/ 
√ 

2 )[ x − λt + ξ0 + 2 R 1 ς ] )] 2 

(27) 

here ς is an arbitrary constant and R 1 , S 1 and N are given as

n (24) . 

Case II: Suppose that m = 2 , by equating the coefficients of

 

i (i = 3 , 2 , 1 , 0) on both sides of ( 17 ), we have 

 

′ 
2 (X ) = g(X ) a 2 (X ) , (28a)

 

′ 
1 (X ) = h (X ) a 2 (X ) + g(X ) a 1 (X ) (28b)

 

′ 
0 (X ) + 2 a 2 (X ) 

[ 
(−k 2 ) X (ξ ) −

(
2 

(λ + 1 + β) (λ + 1 − β) 

)
X 

3 (ξ ) 
] 

= h (X ) a 1 (X ) + g(X ) a 0 (X ) (28c) 
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r

R

S

R

a 1 (X ) 
[ 
(−k 2 ) X (ξ ) −

(
2 

(λ + 1 + β)(λ + 1 − β) 

)
X 

3 (ξ ) 
] 

= h (X ) a 0 (X ) (28d)

Since, a i (X )(i = 0 , 1 , 2) are polynomials, then from (28a) we

deduce that a 2 (X ) is a constant and g(X ) = 0 . For simplicity, we

take a 2 (X ) = 1 , and balancing the degrees of h (X ) , a 1 (X ) and a 2 (X )

we conclude that deg (h (X )) = 1 , only. In this case, we assume

that h (X ) = AX + B, and A � = 0 , then we find a 1 (X ) and a 0 (X ) as

follows 

a 1 (X ) = 

1 

2 

A X 

2 + BX + D (29a)

a 0 (X ) = 

(
A 

8 

+ 

1 

(1 + λ + β)(1 + λ − β) 

)
X 

4 

+ 

1 

2 

AB X 

3 + 

(
AD + B 

2 

2 

+ k 2 
)

X 

2 + BDX + F , (29b)

where D and F is an arbitrary integration constants. 

Substituting a 0 (X ) , a 1 (X ) , a 2 (X ) and h (X ) in ( 28d ), and setting

all the coefficients of powers X to be zero, then we obtain a system

of nonlinear algebraic equations and by solving it, we obtain 

D = −2 

√ 

F , B = 0 , λ = −1 − ( 
√ 

−4 F + k 4 β2 ) / k 2 , A = 2 k 2 / 
√ 

F , 

(30a)

D = −2 

√ 

F , B = 0 , λ = −1 + ( 
√ 

−4 F + k 4 β2 ) / k 2 , A = 2 k 2 / 
√ 

F , 

(30b)

D = 2 

√ 

F , B = 0 , λ = −1 − ( 
√ 

−4 F + k 4 β2 ) / k 2 , A = −2 k 2 / 
√ 

F , 

(30c)

D = 2 

√ 

F , B = 0 , λ = −1 + ( 
√ 

−4 F + k 4 β2 ) / k 2 , A = −2 k 2 / 
√ 

F , 

(30d)

Using the conditions ( 30a ) and ( 30b ) in ( 16 ), we obtain 

 (ξ ) = [2 F − k 2 X 

2 (ξ )] / 2 

√ 

F (31)

Combining (31) with (14a) , then we obtain the exact solution to

(13) and thus, the traveling wave solutions of the CNLST Eq. (1) can

be written as ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

u 5 (x, t) = ( 
√ 

2 F /k ) 

× tanh [ (k/ 
√ 

2 )[ x + t + ( 
√ 

−4 F + k 4 β2 / k 2 ) t + ξ0 + 2 

√ 

F ς ] ] 

× exp [ i (k x − ωt)] 

v 5 (x, t) = R 2 × tanh 

2 

[ (k/ 
√ 

2 )[ x + t + ( 
√ 

−4 F + k 4 β2 / k 2 ) t + ξ0 + 2 

√ 

F ς ] ] 

w 5 (x, t) = S 2 

× tanh 

2 
[ (k/ 

√ 

2 )[ x + t + ( 
√ 

−4 F + k 4 β2 / k 2 ) t + ξ0 + 2 

√ 

F ς ] ] 

, 

(32)
S  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u 6 (x, t) = ( 
√ 

2 F /k ) 

× tanh [ (k/ 
√ 

2 )[ x + t − ( 
√ 

−4 F + k 4 β2 / k 2 ) t + ξ0 + 2 

√ 

F ς ] ] 

× exp [ i (k x − ω t)] 

v 6 (x, t) = R 3 

×tanh 

2 
[ (k/ 

√ 

2 )[ x + t − ( 
√ 

−4 F + k 4 β2 / k 2 ) t + ξ0 + 2 

√ 

F ς ] ]

w 6 (x, t) = S 3 

× tanh 

2 
[ (k/ 

√ 

2 )[ x + t − ( 
√ 

−4 F + k 4 β2 / k 2 ) t + ξ0 + 2 

√ 

F ς ] ] 

(33)

espectively. Therefore, we also get the extra exact solutions of the

onsidered Eq. (1) as 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u 7 (x, t) = ( 
√ 

2 F /k ) 

×
[ 

tanh ( ( 2 k/ 
√ 

2 )[ x + t + ( 
√ 

−4 F + k 4 β2 / k 2 ) t + ξ0 + 2 

√ 

F ς ] ) ±
i sec h ( ( 2 k/ 

√ 

2 )[ x + t + ( 
√ 

−4 F + k 4 β2 / k 2 ) t + ξ0 + 2 

√ 

F ς ] ) 

] 

× exp [ i (k x − ω t)] 

v 7 (x, t) = R 2 

×
[ 

tanh ( ( 2 k/ 
√ 

2 )[ x + t + ( 
√ 

−4 F + k 4 β2 / k 2 ) t + ξ0 + 2 

√ 

F ς ] ) ±
i sec h ( ( 2 k/ 

√ 

2 )[ x + t + ( 
√ 

−4 F + k 4 β2 / k 2 ) t + ξ0 + 2 

√ 

F ς ] ) 

] 2

w 7 (x, t) = S 2 

×
[ 

tanh ( ( 2 k/ 
√ 

2 )[ x + t + ( 
√ 

−4 F + k 4 β2 / k 2 ) t + ξ0 + 2 

√ 

F ς ] ) ±
i sec h ( ( 2 k/ 

√ 

2 )[ x + t + ( 
√ 

−4 F + k 4 β2 / k 2 ) t + ξ0 + 2 

√ 

F ς ] ) 

] 2

(34)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u 8 (x, t) = ( 
√ 

2 F /k ) 

×
[ 

tanh ( ( 2 k/ 
√ 

2 )[ x + t − ( 
√ 

−4 F + k 4 β2 / k 2 ) t + ξ0 + 2 

√ 

F ς ] ) ±
i sec h ( ( 2 k/ 

√ 

2 )[ x + t − ( 
√ 

−4 F + k 4 β2 / k 2 ) t + ξ0 + 2 

√ 

F ς ] ) 

] 

× exp [ i (k x − ω t)] 

v 8 (x, t) = R 3 

×
[ 

tanh ( ( 2 k/ 
√ 

2 )[ x + t − ( 
√ 

−4 F + k 4 β2 / k 2 ) t + ξ0 + 2 

√ 

F ς ] ) ±
i sec h ( ( 2 k/ 

√ 

2 )[ x + t − ( 
√ 

−4 F + k 4 β2 / k 2 ) t + ξ0 + 2 

√ 

F ς ] ) 

] 2

w 8 (x, t) = S 3 

×
[ 

tanh ( ( 2 k/ 
√ 

2 )[ x + t − ( 
√ 

−4 F + k 4 β2 / k 2 ) t + ξ0 + 2 

√ 

F ς ] ) ±
i sec h ( ( 2 k/ 

√ 

2 )[ x + t − ( 
√ 

−4 F + k 4 β2 / k 2 ) t + ξ0 + 2 

√ 

F ς ] ) 

] 2

(35)

espectively, where, 

 2 = 

2 F ( k 2 + 

√ 

−4 F + k 4 β2 ) 

k 2 (1 + β)( k 2 β −
√ 

−4 F + k 4 β2 ) 
, 

 2 = 

2 F ( k 2 + 

√ 

−4 F + k 4 β2 ) 

k 2 (−1 + β)( k 2 β + 

√ 

−4 F + k 4 β2 ) 

 3 = 

2 F ( k 2 −
√ 

−4 F + k 4 β2 ) 

k 2 (1 + β)( k 2 β + 

√ 

−4 F + k 4 β2 ) 
, 

 3 = 

2 F ( k 2 −
√ 

−4 F + k 4 β2 ) 

k 2 (1 + β)( k 2 β + 

√ 

−4 F + k 4 β2 ) 
(36)
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Similarly, as in the case of (30c) and (30d) , from (16) , we get 

 (ξ ) = [ −2 F + k 2 X 

2 (ξ )] / 2 

√ 

F . (37)

nd therefore, the traveling wave solutions of the CNLST Eq. (1) are

hus obtained as 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u 9 (x, t) = −( 
√ 

2 F /k ) 

× tanh [ (k/ 
√ 

2 )[ x + t + ( 
√ 

−4 F + k 4 β2 / k 2 ) t + ξ0 − 2 

√ 

F ς ] ] 

× exp [ i (k x − ωt)] 

v 9 (x, t) = R 2 

×tanh 

2 
[ (k/ 

√ 

2 )[ x + t + ( 
√ 

−4 F + k 4 β2 / k 2 ) t + ξ0 − 2 

√ 

F ς ] ] 

w 9 (x, t) = S 2 

×tanh 

2 
[ (k/ 

√ 

2 )[ x + t + ( 
√ 

−4 F + k 4 β2 / k 2 ) t + ξ0 − 2 

√ 

F ς ] ] , 

(38) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u 10 (x, t) = −( 
√ 

2 F /k ) 

× tanh [ (k/ 
√ 

2 )[ x + t − ( 
√ 

−4 F + k 4 β2 / k 2 ) t + ξ0 − 2 

√ 

F ς ] ] 

× exp [ i (k x − ω t)] 

v 10 (x, t) = R 3 

×tanh 

2 
[ (k/ 

√ 

2 )[ x + t − ( 
√ 

−4 F + k 4 β2 / k 2 ) t + ξ0 − 2 

√ 

F ς ] ] 

w 10 (x, t) = S 3 

×tanh 

2 
[ (k/ 

√ 

2 )[ x + t − ( 
√ 

−4 F + k 4 β2 / k 2 ) t + ξ0 − 2 

√ 

F ς ] ] , 

(39) 

espectively. 

As the previous obtained solutions, we therefore have the fol-

owing extra exact solutions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u 11 (x, t) = −( 
√ 

2 F /k ) 

×
[ 

tanh ( ( 2 k/ 
√ 

2 )[ x + t + ( 
√ 

−4 F + k 4 β2 / k 2 ) t + ξ0 − 2 

√ 

F ς ] ) ±
i sec h ( ( 2 k/ 

√ 

2 )[ x + t + ( 
√ 

−4 F + k 4 β2 / k 2 ) t + ξ0 − 2 

√ 

F ς ] ) 

] 

× exp [ i (k x − ω t)] 
v 11 (x, t) = R 2 

×
[ 

tanh ( ( 2 k/ 
√ 

2 )[ x + t + ( 
√ 

−4 F + k 4 β2 / k 2 ) t + ξ0 − 2 

√ 

F ς ] ) ±
i sec h ( ( 2 k/ 

√ 

2 )[ x + t + ( 
√ 

−4 F + k 4 β2 / k 2 ) t + ξ0 − 2 

√ 

F ς ] ) 

] 2

w 11 (x, t) = S 2 

×
[ 

tanh ( ( 2 k/ 
√ 

2 )[ x + t + ( 
√ 

−4 F + k 4 β2 / k 2 ) t + ξ0 − 2 

√ 

F ς ] ) ±
i sec h ( ( 2 k/ 

√ 

2 )[ x + t + ( 
√ 

−4 F + k 4 β2 / k 2 ) t + ξ0 − 2 

√ 

F ς ] ) 

] 2

(40) 
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u 12 (x, t) = −( 
√ 

2 F /k ) 

×
[ 

tanh ( ( 2 k/ 
√ 

2 )[ x + t − ( 
√ 

−4 F + k 4 β2 / k 2 ) t + ξ0 − 2 

√ 

F ς ] ) ±
i sec h ( ( 2 k/ 

√ 

2 )[ x + t − ( 
√ 

−4 F + k 4 β2 / k 2 ) t + ξ0 − 2 

√ 

F ς ] ) 

] 

× exp [ i (k x −ωt)] 

v 12 (x, t) = R 3 

×
[ 

tanh ( ( 2 k/ 
√ 

2 )[ x + t − ( 
√ 

−4 F + k 4 β2 / k 2 ) t + ξ0 − 2 

√ 

F ς ] ) ±
i sec h ( ( 2 k/ 

√ 

2 )[ x + t − ( 
√ 

−4 F + k 4 β2 / k 2 ) t + ξ0 − 2 

√ 

F ς ] ) 

] 2

w 12 (x, t) = S 3 

×
[ 

tanh ( ( 2 k/ 
√ 

2 )[ x + t − ( 
√ 

−4 F + k 4 β2 / k 2 ) t + ξ0 − 2 

√ 

F ς ] ) ±
i sec h ( ( 2 k/ 

√ 

2 )[ x + t − ( 
√ 

−4 F + k 4 β2 / k 2 ) t + ξ0 − 2 

√ 

F ς ] ) 

] 2

(41) 

espectively. Where ς is an arbitrary constant and R 2 , R 3 , S 2 , and

 3 are given as in (36) . Comparing these results with the results

btained in [27] , it can be seen that the solutions here are new. 

. Algorithm of the SIV method 

Jabbari et al. in [33] have been written the He’s semi – inverse

ariational (SIV) method in the following steps: 

Step 1. If possible, integrate Eq. (5) term by term one or more

imes, this yields constant(s) of integration. For simplicity, the in-

egration constant(s) can be set to zero. 

Step 2. According to He’s semi – inverse method, we construct

he following trial – functional. 

(u ) = 

∫ 
L d ξ , (42) 

here L is an unknown function of u and its derivatives. 

Step 3. By the Ritz method, we can obtain different forms of

olitary wave solutions, such as 

 (ξ ) = H sec h (Kξ ) , u (ξ ) = H csc h (Kξ ) , 

 (ξ ) = H tanh (Kξ ) , u (ξ ) = H coth (Kξ ) , (43) 

nd so on. For example in this paper,we search a solitary wave so-

ution in the form 

 (ξ ) = H sec h (Kξ ) , (44)

here H and K are constants to be further determined. Substitut-

ng Eq. (44) into Eq. (5) and making J stationary with respect to H

nd K results in 

 J/∂ H = 0 , (45a)

 J/∂ K = 0 . (45b)

olving Eqs. (45a) and ( 45b ), we obtain values of H and K. Hence

he solitary wave solution ( 44 ) is well determined. 

. Application 

By He’s semi – inverse method [26,34,35] , we can obtain the

ollowing variational formulation 

 = 

∫ ∞ 

0 

[ −(1 / 2) (φ′ ) 2 + ( k 2 / 2) φ2 (ξ ) 

+ ( 1 / 2(λ + 1 + β)(λ + 1 − β) αk ) φ4 (ξ )] dξ . (46) 

y a Ritz – like method, we search for a solitary wave solution in

he form 

(ξ ) = H sec h (Kξ ) , (47)
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Fig. 1. (a) 3D graph of u 1 for k = 1 , λ = 1 , β = 3 and ξ0 = 0 with −20 ≤ x, t ≤ 20 . (b) 2D graph of u 1 for k = 1 , λ = 1 , β = 3 and ξ0 = 0 with −20 ≤ x ≤ 20 . 

Fig. 2. (a) 3D graph of v 1 for k = 1 , λ = 1 and β = 3 with −10 ≤ x, t ≤ 10 (b) 2D graph of v 1 for k = 1 , λ = 1 and β = 3 with −10 ≤ x ≤ 10 . 

Fig. 3. (a) 3D graph of w 1 for k = 1 , λ = 1 , β = 3 and ξ0 = 0 with −10 ≤ x, t ≤ 10 (b) 2D graph of w 1 for ω = 1 , k = 1 , λ = 1 , β = 3 and ξ0 = 0 with −10 ≤ x ≤ 10 . 
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Fig. 4. (a) 3D graph of u 2 for ω = 1 , k = 1 , λ = 1 and β = 1 . 5 with −10 ≤ x, t ≤ 10 (b) 2D graph of u 2 for ω = 1 , k = 1 , λ = 1 and β = 1 . 5 with −10 ≤ x ≤ 10 . 

Fig. 5. (a) 3D graph of v 2 for k = 1 , λ = 1 and β = 1 . 5 with −10 ≤ x, t ≤ 10 (b) 2D graph of v 2 for k = 1 , λ = 1 and β = 1 . 5 with −10 ≤ x ≤ 10 . 
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here H and K are unknown constants to be determined later.

ubstituting Eq. (47) into Eq. (13) , we have 

 = 

∫ ∞ 

0 

[ −( H 

2 K 

2 / 2) sec h 

2 (Kξ ) tanh 

2 
(Kξ ) + ( k 2 / 2) H 

2 sec h 

2 (Kξ ) 

+ ( 1 / 2( λ + 1 + β)(λ + 1 − β) ) A 

4 sec h 

4 (Kξ )] dξ

= −( H 

2 K/ 6) + ( H 

4 / 3 K(λ + 1 + β)(λ + 1 − β)) + ( H 

2 k 2 / 2 K) . 

(48) 

aking J stationary with H and K yields 

 J/∂ H = −(H K/ 3) + (H k 2 /K) 

+ [ 4 H 

3 / 3 K(λ + 1 + β)(λ + 1 − β) ] , (49a) 

 J/∂ K = −(H 

2 / 6) − ( H 

2 k 2 / 2 K 

2 ) 

− [ H 

4 / 3 K 

2 (λ + 1 + β)(λ + 1 − β) ] . (49b) 

From Eqs. (49a) and (49b) , we get 

 = k 
√ 

−1 + β2 − 2 λ − λ2 , K = i k. (50)
The soliton solutions are, therefore, obtained for Eq. (1) and can

e written as 
 

 

 

 

 

u 13 (x, t) = k R 1 sec h [ i k (x − λt + ξ0 )] × exp [ i (k x − ωt)] 

v 13 (x, t) = −(λk 2 R 1 
2 
/ S 1 ) sec h 

2 [ i k (x − λt + ξ0 )] 

w 13 (x, t) = (λk 2 R 1 
2 
/N) sec h 

2 [ i k (x − λt + ξ0 )] , 

(51) 

here ξ0 is an arbitrary constant and R 1 , S 1 and N are given as in

24) . 

These solutions are all new exact solutions. 

emark 1. If we seek a solitary wave solution in the form u (ξ ) =
 tanh (B ξ ) or u (ξ ) = A coth (B ξ ) , we can further apply Liu’s

heorem 3 to get more exact traveling wave solutions to the new

oupled nonlinear Schrodinger type (CNLST) Eq. (1) , and this is left

or the reader. 

emark 2. First integrals play an important role in studing the

onlinear ODEs., since they allow to find solutions of a nonlinear

ifferential equation by quadratures. We also note that our results

or using the FI method were based on the assumptions m = 1
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Fig. 6. (a) 3D graph of w 2 for k = 1 , λ = 1 and β = 1 . 5 with −10 ≤ x, t ≤ 10 (b) 2D graph of w 2 for k = 1 , λ = 1 and β = 1 . 5 with −10 ≤ x ≤ 10 . 

Fig. 7. (a) 3D graph of u 13 for ω = 1 , k = 1 , λ = 1 and β = 3 . 5 with −5 ≤ x, t ≤ 5 (b) 2D graph of u 13 for ω = 1 , k = 1 , λ = 1 and β = 3 . 5 with −5 ≤ x ≤ 5 . 
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and m = 2 .The discussion becomes more complicated for the cases

m = 3 and m = 4 because the hyper-elliptic integrals, the irregular

singular point theory and the elliptic integrals of the second kind

are involved. Also, we do not need to consider the cases m ≥ 5 be-

cause it is known that an algebraic equation with degree greater

than or equal to 5 is generally not solvable. 

6. Graphical representation of the solutions 

Solutions u 1 and w 1 represent squeezed anti-bell shape soliton

solution, on the other side v 1 represent the bell shape soliton solu-

tion. A soliton is a solitary wave which retains its shape and ampli-

tude after the collision with another solitary wave in the course of

propagation with a constant velocity. Its form is usual and stable.

Solitons are due to a skilled balance of nonlinear and dispersive ef-

fects of the medium. Solitons are the solutions of a comprehensive
roup of weakly nonlinear dispersive partial differential equations

ecounting physical systems. 

The modulus of the solutions u 2 , u 4 , u 6 ,…, u 12 represent multi-

oliton solution whereas solutions v 2 , v 4 , v 6 ,…, v 12 represent the

queezed bell shape soliton solution. On the other hand w 2 , w 4 ,

 6 ,…, w 12 represent anti-bell shape soliton solution. For mini-

alism, the rest of the graphs of the solutions have not been

epicted. 

Solutions u 13 , v 13 and w 13 illustrate the singular periodic so-

ution. Periodic traveling waves play a significant role in vari-

us physical problems, including reaction-diffusion-advection im-

ulsive systems, systems, self-reinforcing systems, etc. The mathe-

atical formulation of abundant intricate phenomena, for instance,

hemistry, physics, biology, mathematical physics and many more

henomena leads to periodic traveling wave solutions. Here we

ave sketched only the graph of the solution u 13 . As the shape of

he other two solutions v and w are similar to the shape of the
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olution u 13 , therefore for succinctness, the other figures have not

een plotted. 

. Conclusion 

In the present work, we have succeeded in extracting new ex-

licit and exact traveling wave solutions of the new coupled non-

inear Schrodinger type (CNLST) Eq. (1) owing to the effective com-

ination of the FI method and Liu’s Theorem 3 . The SIV principle

s a very dominant approach to find solitary solutions (solitons) for

he new coupled nonlinear Schrodinger type (CNLST) Eq. (1) ,where

e have searched for these kinds of solutions in the forms of Eq.

47) . Another soliton solutions of the considered equation can be

btained via the assumption u (ξ ) = � sec h 2 (
ξ ) , where � and 


re constants to be determined, and we left this work also for the

eader. 

The obtained solutions may be important for the explanation

f some practical physical problems. The first integral method de-

cribed herein is not only efficient but also has the merit of be-

ng widely applicable. Therefore, all the used methods in this pa-

er can be extended for applications to other nonlinear PDEs. with

ower laws nonlinearities and this will be conducted in a future

ork. 
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