
Journal of the Egyptian Mathematical Society
Volume (26) - Issue (3) - 2018

ISSN:1110-256X
DOI:10.21608/joems.2018.2691.1052

EFFICIENT GENERATION OF SHORTEST ADDITION-MULTIPLICATION CHAINS

Hatem M. Bahig and A. E. A. Mahran

Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, Egypt
hmbahig@sci.asu.edu.eg, h.m.bahig@gmail.com, a.e.a.mahran@gmail.com

Received 26/3/2018 Revised 30/4/2018 Accepted 23/7/2018

Abstract

The aim of this paper is to generalize some results on addition chains to addition-multiplication chains. The pa-
per concerns with generating shortest addition-multiplication chains. It first presents two methods for generating short
addition-multiplication chains. Second, it presents an algorithm for generating a shortest addition-multiplication chain.
Then it proposes three main improvements for generating a shortest addition-multiplication chain. The practical results
show that the proposed improvements reduce, on the average, the running time and storage of the algorithm by about
95% and 35% respectively for data range 12 − 20 bits. Similar practical results are obtained for generating all shortest
addition-multiplication chains. Finally, the paper discusses how to apply the algorithm to obtain some results that have
been uncovered previously.

keywords: addition chain, addition-multiplication chain, branch and bound algorithm, bounding sequence
MSC: 68W01, 11Y16

1 Introduction

Given a natural number x, an addition-multiplication chain [1–3] of length l for x, denoted by AMC(x, l), is a monotonic
increasing sequence of numbers 1 = a0, a1, . . . , al = x, where for each 0 < i ≤ l, ai is the sum or product of two (not necessary
distinct) preceding elements, i.e.,

ai = aj
+
∗ ak, 0 ≤ k ≤ j ≤ i− 1 (1)

Let `AM (x) denotes the shortest length of all possible AMCs for x. If Eq.(1) is replaced by ai = aj +ak, then the chain is
called addition chain, simply AC, i.e., AMCs are extension of ACs. The shortest length of all possible ACs for x is denoted
by `A(x). ACs play an important role for integer evaluation [2, 4, 5]. The length of an AC for n measures the number of
multiplications needed for computing powers yx from y, where y is an element of some group, such as Zn, or elliptic curves,
and the allowed operation, in such group, is the product of two previously-computed powers. For example, computing y43 can
be done with 7 multiplications y, y2 = y∗y, y3 = y2∗y, y5 = y3∗y2, y10 = y5∗y5, y20 = y10∗y10, y40 = y20∗y20, y43 = y40∗y3,
using the AC: 1, 2, 3, 5, 10, 20, 40, 43. While it can be computed with 8 multiplications using the AC: 1, 2, 4, 8, 16, 32, 40, 42, 43.

Design an efficient algorithm for computing yx has important applications in cryptography [6, 7].
The problem of generating an AC with shortest length is NP-complete [2] while it remains open for AMCs [3,4].

The notation of AMCs is firstly introduced by Dobkin and Lipton [1,2] as a computational model for polynomials evalu-
ation.

It is important to point out that Eq.(1) may hold for more than one pair (j, k), and one operation. For example, suppose
that an AMC(8, 5) is 1, 2, 3, 4, 6, 8. The number 4 has different representations: 4 = 3 + 1, 4 = 2 + 2, 4 = 2 ∗ 2. Similarly, the
number 6 has different representations: 6 = 4 + 2, 6 = 3 + 3, 6 = 2 ∗ 3. To fix this problem, there are two approaches:

1. As in [5], let j be as large as possible. This guarantees that ai can be represented uniquely except when ai = ai−1+ai−1,
ai = ai−1 ∗ a1, and i > 1. In this case, one can consider ai = ai−1 ∗ a1.

509

2. As in [7], associate to the sequence a0, a1, . . . , al a sequence w1, . . . , wl of pairs wi = (ji, ki), 0 ≤ ji, ki < i such that for
each 0 < i ≤ l, ai = aji

+
∗ aki .

For simplicity and most commonly used in practice, we use the first approach.

Each step i, i.e., ai = aj
+
∗ ak, can be defined by two notations:

(1) star-nonstar: Let o ∈ {+, ∗}. A step i is called o-star (or star for o) if ai = ai−1 o ak, 0 ≤ k < i, i.e., j = i − 1.
Therefore, a step i is called o-nonstar if ai = aj o ak, 0 ≤ k ≤ j ≤ i − 2. A special case of o-star is o-doubling (or
doubling for o) when j = k = i− 1. Similarly, a step is called o-nondoubling if ai = aj o ak, 0 ≤ j ≤ i− 1, 0 ≤ k ≤ i− 2.

If the set of possible types of step i in a partial AMC a0, a1, . . . , ai−1 is {∗-star,+-star}, then we call step i a star.
Similarly, for others types of steps. An AMC(x, l) is called star if every step is star.

For simplicity, when we say that ai is o-star, for example, it means that step i is o-star.

(2) small-big: Define the function λAM as follows:

λAM (1) = 0; and λAM (n) = blog2 log2 nc, n ≥ 2.

If λAM (ai) = λAM (ai−1), then step i > 0 is called small; otherwise, (i.e., λAM (ai−1) = λAM (ai)− 1), it is called big.

Suppose that i ≥ 1. The number of small steps in the partial AMC a0, a1, . . . , ai is denoted by SSAM (a0, a1, · · · , ai).

For example, Table 1 shows the type and the number of small steps for each step 0 < i ≤ 6 in the AMC(44, 6) :
1, 2, 3, 9, 11, 33, 44.

Table 1: Type of each step in the chain 1, 2, 3, 9, 11, 33, 44.

i ai star-nonstar step small-big step SSAM (a0, a1, . . . , ai)
1 2 +-star, +-double small 1
2 3 +-star small 2
3 9 ∗-star, ∗-double big 2
4 11 +-star small 3
5 33 ∗-star big 3
6 44 +-star small 4

There is a lot of work for studying ACs including determining `A(x) and generating short or shortest ACs, see for exam-
ples [5–10], while there are a few papers for studying AMCs [1, 3, 11, 12]. To the best of our knowledge, there is no article
studied generation of AMCs. Therefore, our goal in this paper is to study generation of a shortest AMC.

The remainder of this paper is organized as follows. Section 2 mentions some results needed in the paper. Section 3
studies an AMC that includes d ∗-doubling steps. Section 4 describes two methods to generate a short AMCs. Section 5
includes a description of a depth-first branch and bound algorithm to find a shortest AMC. It also includes proposing new
bounding sequences to improve the efficiency and the storage of the algorithm. Section 6 presents the implementation of
the algorithm and some improvements. Some computational results and remarks that have been uncovered previously are
presented in Section 7. Finally, Section 8 presents the conclusion and some open problems.

2 Preliminaries

This section presents some known results needed in this paper.

510

Proposition 1. [3]

1. `AM (x) ≥ log2 log2 x+ 1, x ≥ 2.

2. `AM (22
x

) = x+ 1, x ≥ 0.

3. `AM (y2
x

) = x+ s+ 2, x ≥ 0 if y is one of the following values:

• 22
s

+ 1, 0 ≤ s.
• 22

s

+ 22
t

, 0 ≤ t ≤ s.
• 22

s ∗ 22
t

, 0 ≤ t ≤ s.

Lemma 2. [3] The last step in a shortest AMC is star.

Lemma 3. [3] Suppose that a0, a1, . . . , ai, . . . , al = x is an AMC(x, l). Then ai is star if SSAM (a0, a1, · · · , ai−3) = 1,
ai−2 = ai−3 ∗ aj , j < i− 4 and ai−1 = ai−3 ∗ ai−3.

3 ∗-doubling step

This section presents some properties of AMC that includes d ∗-doubling steps.

Theorem 4. Let 1 = a0, a1, . . . , al = x be an AMC(x, l) that includes d ∗-doubling, then

x ≤ 22
d−1fib(l−d+3) (2)

where fib(k) is Fibonacci sequence defined by fib(0) = 0, fib(1) = 1, fib(k) = fib(k − 1) + fib(k − 2), k > 1.

Proof. The proof is by induction on l. One can prove the theorem at l = 1, 2, and then at l ≥ 3. Suppose that l = 1. Then
the AMC is 1, 2. Clearly, d = 0, fib(4) = 3, and so Eq.(2) holds. Similarly, if l = 2, then Eq.(2) holds since there are two
AMCs 1, 2, 4 and 1, 2, 3 with d = 1, and 0 respectively.
Now suppose that l ≥ 3.
If step l is a ∗-doubling, then

x = al = al−1 ∗ al−1 ≤ 22(2
d−2fib(l−d+3)) = 22

d−1fib(l−d+3)

and so Eq.(2) holds.
Otherwise, step l can be a ∗-nondoubling, +-nondoubling, or +-doubling. The +-doubling step can be considered a ∗-
nondoubling since al = al−1 + al−1 = 2 ∗ al−1 = a1 ∗ al−1 (l ≥ 3). Thus, step l is o-nondoubling, where o ∈ {∗,+}. Therefore,
there exists j satisfies 0 ≤ j ≤ l − 2 such that

x = al ≤ al−1 +
∗ aj ≤ al−1 +

∗ al−2 ≤ al−1 ∗ al−2 (3)

Similar to the step l, there are two cases for step l − 1.
Case 1: if step l − 1 is a ∗-doubling, then by Eq.(3)

x ≤ a3l−2 ≤ (22
d−2fib(l−d+2))3 = 23(2

d−2fib(l−d+2)).

Now, since

2fib(l − d+ 3)− 3fib(l − d+ 2) = 2fib(l − d+ 2) + 2fib(l − d+ 1)− 3fib(l − d+ 2)

= 2fib(l − d+ 1)− fib(l − d+ 2)

= 2fib(l − d+ 1)− fib(l − d+ 1)− fib(l − d)

= fib(l − d+ 1)− fib(l − d)

> 0 for all l − d > 0

511

Hence x ≤ 22
d−1fib(l−d+3).

Case 2: Otherwise, step l − 1 is an o-nondoubling, where o ∈ {∗,+}. Then, by Eq.(3),

x ≤ 22
d−1fib(l−d+2) ∗ 22

d−1fib(l−d+1) ≤ 22
d−1(fib(l−d+2)+fib(l−d+1)) = 22

d−1fib(l−d+3)

so Eq.(2) holds.

Corollary 5. Let 1 = a0, a1, . . . , al = x be an AMC(x, l) that includes d ∗-doubling and s small steps, then

s < l − d < 3.271s.

Proof. Obviously s ≤ l − d. By Lemma 1, and Theorem 4, it follows that 22
λAM (x) ≤ x ≤ 22

d−1fib(l−d+3) ≤ 22
dφl−d since

fib(l − d + 3) < 2φl−d where φ = 1+
√
5

2 when l − d ≥ 0. Since λAM (x) + s = l, it follows that 22
λAM (x) ≤ 22

λAM (x)+s(φ2)l−d

and so 2 ≤ 22
s(φ2)l−d . By applying lg lg, 0 ≤ s + (l − d)(lg φ − 1). Hence, s < l − d < 3.271s follows from the fact that

1
1−lg φ ≈ 3.2706.

4 Generating Short AMCs

This section presents two methods to generate a short AMC. Similar methods on ACs can be found in [5].

4.1 The m−ary Method

The m−ary method depends on expressing x as x = α0m
t + α1m

t−1 + . . .+ αt−1m+ αt, where 0 ≤ αi < m for 0 ≤ i ≤ t =
blogm(x)c.
The AMC(x,m− 1 + 2t) generated by the m−ary method is as follows:

1, 2, 3, · · · ,m,mα0,mα0 + α1,m(mα0 + α1),m(mα0 + α1) + α2, · · · ,m(· · · (m(mα0 + α1) + α2) + · · ·) + αt
Hence,

`AM (x) ≤ m− 1 + 2blogm(x)c ≤ m− 1 + 2 logm(x) (4)

For a fixed number x, the right hand side of Eq.(4) is minimized if m satisfies the condition

m(ln(m))2 = 2 ln(x) (5)

which is obtained by differentiation. Table 2 shows different integer values for x and m for Eq.(5).

Table 2: Different values for x and m in Eq.(5)

range of x m range of x m
2 2 2958 ∼ 88154 6
3 ∼ 15 3 88155 ∼ 4091319 7
16 ∼ 162 4 4091320 ∼ 284005321 8
163 ∼ 2957 5 284005322 ∼ 28537793165 9

For examples,

1. Let x = 14. Using Table 2, m = 3. Therefore, t = 2. It follows that x can be expressed as x = 14 = 1 ∗ 32 + 1 ∗ 31 + 2
where α0 = α1 = 1, and α2 = 2. By using the m−ary method, one can construct the following AMC

1, 2, 3 = m, 3 = mα0, 4 = mα0 + α1, 12 = m(mα0 + α1), 14 = m(mα0 + α1) + α2.

After removing the repeated numbers (since AMCs are monotonic increasing sequences), the AMC(14, 5) is

1, 2, 3, 4, 12, 14.

512

2. Let x = 167. Then m = 5, t = 3, and
167 = 1 ∗ 53 + 1 ∗ 52 + 3 ∗ 51 + 2.

Using the m−ary method (and after removing the repeated number 5 = m ∗ α0), the AMC(167, 9) is

1, 2, 3, 4, 5, 6 = 5 + 1, 30 = 6 ∗ 5, 33 = 30 + 3, 165 = 33 ∗ 5, 167 = 165 + 2.

4.2 The Factor Method

Let 1 = a0, a1, . . . , ar = x be a shortest AMC(x, r), and 1 = b0, b1, . . . , bt = y be a shortest AMC(y, t). One can construct
AMC(xy, r + t) as follows:

a0, a1, . . . , ar, b2, b3, . . . , bt, arbt = xy.

Sometimes there is a need to remove the repeated numbers and reorder the numbers. This proves the following proposition

Proposition 6.
`AM (xy) ≤ `AM (x) + `AM (y).

For examples:

1. The chain 1, 2, 3, 9, 81, 90 is AMC(90, 5), while the chain 1, 2, 4, 16, 17 is AMC(17, 4). Using the factor method (and
after reordering the numbers), the chain

1, 2, 3, 4, 9, 16, 17, 81, 90, 1530 = 90 ∗ 17

is AMC(1530, 9).

2. The chain 1, 2, 3, 9, 81, 90 is AMC(90, 5), while the chain 1, 2, 3, 9, 11 is AMC(11, 4). Using the factor method (and after
removing the repeated numbers and reordering the numbers), the chain

1, 2, 3, 9, 11, 81, 90, 990 = 90 ∗ 11

is AMC(1530, 7).

5 Generating Shortest Addition-Multiplication Chains

This section contains two subsections. Section 5.1 proposes a depth-first branch and bound algorithm to search for an AMC
with the shortest length. Section 5.2 proposes a new lower bound for each element in any AMC(x, l). The set of lower
bounds is called bounding sequence. The proposed bounding sequence is used to cut off some elements (and so branches) in
the search tree that cannot lead to AMC with shortest length.

5.1 The Algorithm

The proposed algorithm is a depth-first branch and bound algorithm that is similar to algorithms in [13–16] for finding
shortest ACs with three differences in:

1. the lower and upper bounds of the shortest length.

2. the set of possible children for any node in the search tree.

3. the bounding sequence, see Section 5.2.

513

The algorithm starts by computing the lower bound lb = dlog2 log2(x)e + 1 of `AMC using Proposition 1-(1), and then
generates a short AMC using the m-ary method (see Section 4.1) with length equals ub = m−1+2blogm(x)c. The algorithm
extends the partial chain a0 = 1, a1 = 2 to find a shortest AMC(x, lb), where lb < ub. If no AMC(x, lb) is found with lb < ub,
then the generated m-ary AMC is shortest. Suppose that the current level is cl, 1 ≤ cl < lb and so the current path is
a0, a1, · · · , acl. To extend the search tree, the algorithm first should ensure that the current level cl < lb, and then adds
the children of acl and their levels cl + 1 onto the stack ST. Then the element and its level at the top of the stack ST are
popped and assigned to (cl, acl). If acl = n, then the algorithm has found a shortest AMC and so the algorithm terminates.
Otherwise, the algorithm continues to find an AMC(x, lb). If i < 2 after pop the top of the stack, this means that the
algorithm exhaustive all search tree and so there is no an AMC(x, lb). Therefore, the algorithm should increase the depth
search by 1, i.e., lb = lb+ 1, and repeats the previous steps. The following algorithm is for finding a shortest AMCs.

Algorithm GSAMC: generating a shortest AMC
Input: x > 2.
Output: AMC(x, `AM (x))
Begin

set the lower bound lb of `AM (x) to dlog2 log2 xe+ 1
set the upper bound ub of `AM (x) to the length of the short AMC generated by

the m-ary method.
while (lb < ub) loop

set a0 and a1 to 1 and 2 respectively
add the pair (0, a0) onto the stack ST
add the pair (1, a1) onto the stack ST
set the current level cl to 1
do

if (cl < lb) then
add the possible children acl+1 of acl and their levels cl + 1 onto the stack ST

end if
Pop and assign to (cl, acl) the top of the stack ST
if acl is equal to x then

output the shortest AMC(x, cl) : a0, a1, · · · , acl = x
end if

while cl > 1
increment lb by 1

end while
output the generated AMC of length ub by the m-ary method.

End.

One of the most important steps to speed up the algorithm is reducing the set of possible children of a node ai

{ai < aj
+
∗ ak ≤ x; 0 ≤ j, k ≤ i}.

Generation of the children of a node ai takes O(i2) steps, where every step includes addition and multiplication of two
numbers. The next subsection proposes a bounding sequence to minimize the number of possible children.

5.2 Bounding Sequences

Suppose that we want to generate an AMC(x, l). A set of positive numbers {bi}li=0 is called a bounding sequence of length
l for x, denoted by BSeq(x, l), if bi ≤ ai for every AMC(x, l) a0, a1, . . . , al = x. This subsection proposes a new bounding
sequence as follows.

Since ai ≤ a2i−1, define a BSeq(x, l) as follows:

bi = dx2
−(l−i)

e, i = l, l − 1, · · · , 0 (6)

It is easy to see that

514

bl = x; bi = d
√
bi+1e, i = l − 1, · · · , 0,

and so each bi can be easily computed from bi+1.

Now, Theorems 7 and 9 show that the proposed bounding sequence Eq.(6) can be used to cut off all paths generated
from the path a0, a1, . . . , ai if ai < bi or ai ∗ ai−1 < bi+1.

Theorem 7. Suppose that {bi}li=0 is a BSeq(x, l) defined by Eq.(6). Then the partial AMC a0, a1, . . . , ai cannot be extended
to an AMC(x, l) if bi > ai.

Proof. Suppose that there is a partial AMC a0, a1, . . . , ai such that ai < bi = dx2−(l−i)e. Whether x2
−(l−i)

is an integer or

not, ai < x2
−(l−i)

. Thus,

x = al ≤ a2
l−i

i < (x2
−(l−i)

)2
l−i

= x.

This is a contradiction, i.e., it is impossible to obtain x from ai in l − i steps. Therefore, a0, a1, . . . , ai cannot be extended
to AMC(x, l).

For example, let x = 16. Using Eq.(6), BSeq(x, 3) is {bi}3i=0 = {1, 2, 4, 16}. The algorithm GSAMC starts with the
partial chain 1, 2. Then GSAMC generates the set of possible children of a1 = 2 which is {3, 4}. Using the bounding sequence
{1, 2, 4, 16}, the set of possible children of a1 is reduced to {4} since 3 < b2 = 4. Thus, BSeq(x, 3) cuts off the path 1, 2, 3
from the search space.

Remark 8. The BSeq defined by Eq.(6) may contain bi−1 = bi for some 2 ≤ i. For example, BSeq(921, 7) is {bi}7i=0 =
{1, 2, 2, 2, 3, 6, 31, 921}. Clearly, b1 = b2 = b3. Therefore, BSeq can be updated to 1, 2, 3, 4, 5, 6, 31, 921. In general, BSeq can
be updated to be monotonic increasing as follows:

set j to 2
while (bj−1 ≥ bj) loop

set bj to bj−1 + 1
set j to j + 1

end while

Theorem 9. Let x 6= y2
α

, α ≥ 0, y ≥ 2 be a natural number and {bi}li=0 be BSeq(x, l) defined by Eq.(6). If there exist a
step 2 ≤ i ≤ l − 1 in AMC(x, l), such that bi+1 > ai ∗ ai−1, then the partial AMC a0, a1, . . . , ai cannot be extended to an
AMC(x, l).

Proof. Clearly, all steps after step i cannot be ∗-doubling since x 6= y2
α

, α ≥ 0, y ≥ 2. Suppose that there exists a step s > i
that is an o−nondoubling, where o ∈ {+, ∗}. Note that the +-doubling step can be considered ∗-nondoubling.

Therefore there exist j, and k satisfy 0 ≤ j ≤ s− 1 and 0 ≤ k ≤ s− 2 such that

as = aj
+
∗ ak ≤ as−1 +

∗ as−2 ≤ (ai)
2s−i−1 +

∗ (ai−1)2
s−i−1

≤ (ai)
2s−i−1

∗ (ai−1)2
s−i−1

since i ≥ 2

≤ (ai ∗ ai−1)2
s−i−1

If ai−1 ∗ ai < bi+1 = dx2−(l−(i+1))e, then

x = al ≤ (as)
2l−s ≤ ((ai ∗ ai−1)2

s−i−1

)2
l−s

= (ai ∗ ai−1)2
l−i−1

< (x2
−l+i+1

)2
l−i−1

= x

a contradiction. Therefore, the partial AMC a0, a1, . . . , ai cannot be extended to an AMC(x, l).

515

The following is an example on Theorem 9. Using Eq.(6), BSeq(63, 4) is {bi}4i=0 = {1, 2, 3, 8, 63}. Using Theorem 7, the
set of possible children of a1 = 2 in the partial chain 1, 2 is {3, 4}. But, by using Theorem 9, the set of possible children of
a1 = 2 is {4} since a1 ∗ a2 = 2 ∗ 3 < b3 = 8. Thus, Theorem 9 cuts off the branch 1, 2, 3 from the search tree. Similarly, the
set of possible children of a2 = 4 in the partial AMC 1, 2, 4 is {8, 16} by using Theorem 7, while it is {16} by using Theorem 9.

Remark 10. The condition ”bi+1 > ai ∗ ai−1” in Theorem 9 cannot be replaced by bi+1 > ai + ai−1. For example, using
Eq.(6), BSeq(91, 6) is {1, 2, 3, 4, 5, 10, 91}. Each element ai in the partial AMC 1, 2, 3, 6, 7, 13 satisfies bi ≤ ai (i ≥ 0) and
bi+1 ≤ ai ∗ ai−1 (i ≥ 2). Thus, this partial AMC may lead to an AMC(91, 6). The partial AMC leads to the AMC(91, 6) :
1, 2, 3, 6, 7, 13, 91 = 13 ∗ 7, while it cannot lead to an AMC(91, 6) if someone uses bi+1 < ai + ai−1 since 91 > 13 + 7.

6 Experimental Results

This section reports the experimental study we have performed to generate one (or all) shortest AMC(s) using GSAMC.
The section reports the impact of using the proposed bounding sequence, and Lemma 2. For generating one shortest AMC,
this section also reports the impact of using the so called “Star-NonStar strategy” [16] which is to find an AMC(x, l), first
try to find a star AMC(x, l). If no star AMC(x, l) is found, then try to find an AMC(x, l), where each step may be star or
nonstar. All implementations were made with the C language and were compiled by gcc compiler. Experiments were con-
ducted on a Pentium IV with 3.2 GHz, and Linux operating system was used to run GSAMC and obtain the performance
and storage results. We have tested five data sets. The data set is chosen randomly with 200 numbers each of fixed n-bits,
where n = 12, 14, 16, 18, and 20.

The proposed improvements are

I1: using Theorem 7, i.e., every child ai+1 of ai (1 ≤ i ≤ l − 1) should satisfy ai+1 ≥ bi+1. If ai+1 < bi+1 for some i, then
Theorem 7 cuts off at least l!/(i+ 1)! paths from the search tree.

I2: using Theorem 9, i.e., every child ai+1 of ai (1 ≤ i ≤ l− 2) should satisfy ai+1 ∗ ai ≥ bi+2. If ai+1 ∗ ai < bi+2 for some i,
then Theorem 9 cuts off at least l!/(i+ 1)! paths from the search tree.

I3: using Lemma 2, i.e., the last step i = l is star. GSAMC restricts the generation of children at step l to star elements
that are equal to x. This improvement speeds up the generation of the last element al in the chain by (l − 1)(l − 2)/2
steps, where each step contains addition and multiplication of two numbers in the current path a0, a1, . . . , al−1. Clearly,
this improvement doesn’t change the size of the stack.

Table 3 presents the average of the execution time in seconds and the obtained improvements to find a shortest AMC by
using GSAMC and its improvements. While Table 4 presents the average of the maximum number of elements in the stack
and the obtained improvements to find a shortest AMC for the same data set used in Table 3.

The data in Tables 3 and 4 show that following results:

1. the improvements I1 and I3 have a good impact to improve the execution time of GSAMC, while the improvement
I2 has a small impact. The performance of I2 over I1 is about 2 ∼ 3%, while the performance of I3 over I1 and I2 is
about 17 ∼ 20%.

2. the improvements I1, I2, and I3 together reduce the execution time of GSAMC by about 95%.

3. the improvement I1 has a good impact to reduce the memory storage of the stack. It reduces the storage by about
35%. On the average, the improvement I2 has almost no effect in reducing the storage of the stack. The improvement
I3 doesn’t change the storage of the stack.

The data in Tables 5 and 6 show the impact of using Star-NonStar strategy to find a shortest AMC. One can conclude
the following:

1. the strategy improves the execution time of GSAMC by about 50%. In other side, it has a very small impact (about
1 ∼ 2.5%) when it applied with the improvements I1, I2, and I3.

516

2. the strategy reduces the memory storage of the stack by about 20%. It also reduces the memory storage of the stack
by about 15% when it applied with the improvements I1, I2, and I3.

3. although uses of the strategy improves the memory storage of the stack and the execution time of GSAMC, the uses
of the strategy with GSAMC has less impact compared to uses of the improvements I1, I2, and I3 with GSAMC.

Finally, Tables 7 and 8 show the impact of using the improvements I1, I2, and I3 to find all shortest AMCs. For
generating one or all shortest AMC, the data in Tables 3, 4, 7, and 8 show that the percentages of the improvements are
almost the same.

Table 3: The average of execution times (in seconds) to find a shortest AMC by using GSAMC and its improvements

GSAMC n–bits
with 12 14 16 18 20

0.15 1.04 12.53 73.42 695.25
I1 0.05 0.29 3.25 17.58 150.12

66.6% 72.1% 74% 76% 78.4%
I1+I2 0.04 0.26 2.86 15.75 132.41

73.3% 75% 77.1% 78.5% 80.9%
I1+I2+I3 0.01 0.05 0.58 3.01 24.22

93.3% 95.1% 95.3% 95.9% 96.5%

Table 4: The average of the memory storage (maximum length of the stack) needed for the stack to find a shortest AMC using

GSAMC and its improvements

GSAMC n–bits
with 12 14 16 18 20

79.66 98.27 126.86 148.65 180.08
I1 51.32 62.91 82.63 96.67 116.32

35.5% 35.9% 34.8% 34.9% 35.4%
I1+I2 51.26 62.71 82.54 96.51 116.21

35.6% 36.1% 34.9% 35.0% 35.4%

Table 5: Comparison (in execution time in seconds) between different strategies to find a shortest AMC.

GSAMC n–bits
with 12 14 16 18 20

0.15 1.04 12.53 73.39 695.25
Star-NonStar strategy 0.07 0.6 5.42 37.39 334.7

53.3% 42.3% 56.7% 49% 51.8%
I1+I2+I3 0.01 0.05 0.58 3.01 24.22

93.3% 95.1% 95.3% 95.9% 96.5%
I1+I2+I3 and 0.006 0.04 0.29 1.59 12.64
Star-NonStar strategy 96% 96.1% 97.6% 97.8% 98.1%

517

Table 6: Comparison (in the maximum length of the stack) between different strategies to find a shortest AMC.

GSAMC n–bits
with 12 14 16 18 20

79.66 98.27 126.86 148.65 180.08
Star-NonStar strategy 60.72 76.8 100.03 119.19 144.56

23.7% 21.8% 21.4% 19.8% 19.7%
I1+I2+I3 51.26 62.71 84.74 96.51 116.21

35.6% 36.1% 34.9% 35.0% 35.4%
I1+I2+I3 and 40.04 48.12 62.72 73.84 94.15
Star-NonStar strategy 49.7% 51% 50.5 % 50.3% 47.7%

Table 7: The average of execution times (in seconds) to find all shortest AMCs by using GSAMC and its improvements

GSAMC n–bits
with 12 14 16 18 20

1.22 11.54 99.54 990.26 8549.3∗

I1+I2+I3 0.08 0.62 4.59 38.45 251.35
93.4% 94.6% 95.3% 96.1% 97%

∗ The average of 50 numbers.

7 Computational Results

Implementing GSAMC with some modifications enables one to reveal some properties of AMCs had not previously been
observed. For examples,

1. besides pushing i+1 and ai+1 in the stack ST, GSAMC also pushes the type of the element (∗-star, ∗-doulbling, · · ·).
This enables one to study whether Lemma 3 can be generalized or not.

2. allowing GSAMC to find all shortest AMCs enables one to answer some questions such as:

• Does there exist a shortest AMC that starts with 1, 2, 4 for any number n?

• Does there exist a shortest AMC for any number n such that every step is star?

This section reports some observations on AMCs by running GSAMC with some modifications.

7.1 Remarks on Lemma 3

The following are remarks on Lemma 3.

1. The condition “SSAM (a0, a1, · · · , ai−2) = 1” is necessary since the chain

1, 2, 3, 5, 15, 25, 45, 1125, 1170, 1195

Table 8: The average of the maximum length of the stack to find all shortest AMCs by using GSAMC and its improvements

GSAMC n–bits
with 12 14 16 18 20

88.56 107.47 134.53 157.76 189.94∗

I1+I2+I3 56.61 66.81 88.16 104.75 127.05
36% 37.8% 34.4% 33.6% 33.1%

∗ The average of 50 numbers.

518

is AMC(1195, 9), also it is shortest by executing GSAMC, where ai−2 = 5 with SSAM (a0, a1, · · · , ai−2) 6= 1 but ai+1

is nonstar.

2. The condition “ai = a2i−2” cannot be replaced by “ai = aj + ak, k, j ≤ i− 1” since

1, 2, 4, 16, 64, 65, 80, 5200, 5201, 5266, 10467

is an AMC(10467, 10), also it is shortest by executing GSAMC, where SSAM (a0, a1, · · · , ai−2) = SSAM (a0, a1, · · · , a3) =
1, ai−1 is ∗-star but ai = a5 = 65 = a4 + a0 and ai+1 = 80 is +-nonstar.

3. The condition “ai−1 = ai−2 ∗ ak, k ≤ i− 3” cannot be replaced by “ai−1 = ai−2 + ak, k ≤ i− 3” since

1, 2, 4, 5, 16, 25, 41

is an AMC(41, 6), also it is shortest by executing GSAMC, where ai−1 = 5 = a2 +a0 is +-star but ai+1 = 25 = a3 ∗a3
is ∗-nonstar.

7.2 `AM(xy) and `AM(x)

Obviously, `AM (2x) ≤ `AM (x) + 1. But, does there exist a number x such that `AM (xy) ≤ `AM (x) for some number y? The
answer is yes. For examples,

• `AM (8) = `AM (16) = 3 since 1, 2, 4, 8 is a shortest AMC(8, 3) and 1, 2, 4, 16 is a shortest AMC(16, 3).
Let n = 375. By running GSAMC, `AM (x) = `AM (2x) = 6, where the AMCs 1, 2, 3, 5, 15, 75, 375 and 1, 2, 3, 5, 25, 30, 750
are shortest for x and 2x respectively.

• For x = 128,
`AM (2x) = `AM (256) = 4 < 5 = `AM (128) = `AM (x)

since, by using Propositions 1-(3) and (2), the AMCs 1, 2, 4, 16, 256 and 1, 2, 4, 16, 64, 128 are shortest for 256 and 128
respectively.

In fact, `AM (2x) = `AM (x) for many numbers x by putting β = 0 in the following proposition.

Proposition 11. Let x = 22
α+2β , α > β + 1 ≥ 1. Then `AM (22

β

x) = `AM (x)

Proof. By Proposition 1-(3), `AM (22
α+2β) = α+ 2.

Since 22
β

x = 22
α+2β+1

, it follows that `AM (22
β

x) = α+ 2 = `AM (x) by Proposition 1-(3).

7.3 Star-AMCs

Let `∗AM (x) denotes the length of shortest star AMCs for x. Thus, `AM (x) ≤ `∗AM (x).
By running GSAMC, the first number with `AM (x) < `∗AM (x) is n = 281, where `AM (281) = 7 and `∗AM (281) = 8. By

running GSAMC, there is only one shortest AMC(281), see Table 9. The next five numbers with `AM (x) < `∗AM (x) are
913, 941, 996, 997 and 998 with shortest lengths are 7, 8, 7, 8, and 8 respectively (see Table 9).

Table 9: All shortest AMCs for 281, 913, 941, 996, 997 and 998. The underlined numbers are ∗-nonstars

x List of shortest AMCs x List of shortest AMCs
281 1, 2, 4, 5, 16, 25, 256, 281 913 1, 2, 3, 9, 11, 81, 83, 913
941 1, 2, 4, 5, 25, 29, 100, 841, 941 996 1, 2, 3, 9, 12, 81, 83, 996
997 1, 2, 3, 9, 12, 81, 83, 996, 997 998 1, 2, 3, 9, 12, 81, 83, 996, 998

519

7.4 The branches 1, 2, 4 and 1, 2, 3

Shortest AMCs may have the partial chains 1, 2, 4 or 1, 2, 3. If shortest AMCs for a number x contain both partial chains,
then one can improve generation of a shortest AMC by restricting the search tree to one of the branches 1, 2, 4 or 1, 2, 3.
Unfortunately, this is not true for all numbers. For examples, there is no shortest AMC starting with the branch 1, 2, 3 for
the number x = 22

α

, α ≥ 0. While the number x = 3 · 5α, α ≥ 0, doesn’t have a shortest AMC starting with the branch
1, 2, 4. See also Table 9 for more examples.

8 Conclusions and Open Problems

This paper has addressed the AMC problem. The contributions, in this paper, consist in (1) extending some theoretical
results on ACs to AMCs; (2) adapting two methods for generating short ACs to AMCs; (3) a branch and bound algorithm
for generating a shortest ACs to a shortest AMC; (4) proposing a new (and the first) bounding sequence to cut off some
branches in the search tree; (5) using of Lemma 2 to speed up the algorithm for generating a shortest AMC; (6) studying the
impact of using the Star-NonStar strategy; (7) proposing a simple modification in the stack to discover some new properties,
and counter examples on some relations on AMCs.

There are still some interesting open problems related to shortest/short AMCs such as

(1) The number of shortest AMCs, denoted by NSAMC(x). Determining NSAMC(x) is an open problem. Does there
exist x 6= 22

α

, α ≥ 0 such that NSAMC(x) = 1? In ACs, the numbers that have only one shortest ACs are 3 and
2n, n ≥ 0 [17,18]. In AMCs, there are many numbers that have only one shortest AMC. For examples, see Table 9.

(2) The number of numbers which have a shortest AMC of length r, i.e., NNAM (r) = |{x : `AM (x) = r}|. For examples,
NNAM (0) = 1, NNAM (1) = 1, NNAM (2) = 2, NNAM (3) = 5, and NNAM (4) = 16.

(3) The minimum number which has a shortest AMC of length r, i.e, MNAM (r) = min{x : `AM (x) = r}. For examples,
MNAM (0) = 1,MNAM (1) = 2,MNAM (2) = 3,MNAM (3) = 5, and MNAM (4) = 7.

(4) Proposing another bounding sequence.

(5) There are many methods for generating (short) ACs [6, 7] need to be adapted to AMCs. Examples of such methods
are binary, constant length nonzero windows and variable length nonzero windows [6, 7].

Acknowledgement

We would like to thank the referees for their valuable comments.

References

[1] R. Lipton and D. Dobkin, Complexity measures and hierarchies for the evaluation of integers and polynomials. Theo-
retical Computer Science 3, 349–357 (1976)

[2] P. Downey, B. Leong and R. Sethi, Computing sequences with addition chains, SIAM J. Computing Vol.10, No.3,
638–646 (1981)

[3] H. Bahig, On a generalization of addition chains: Addition-multiplication chains. Discrete Mathematics 308(4): 611-616
(2008)

[4] D. Dobkin and R. Lipton, Addition chain methods for the evaluation of specific polynomials. SIAM J. Computing Vol.9,
No.1, 121–125 (1980)

[5] D. E. Knuth, The Art of Computer Programming: Seminumerical Algorithms, Vol.2, 3rd ed., Addison-Wesley, Reading
MA, 461–485 (1997)

520

[6] D. M Gordon A survey of fast exponentiation methods. J. Algorithms 122: 129–146 (1998)

[7] S. Vanstone, P. van Oorschot, A. Menezes, Handbook of applied cryptography, Ch.14, CRC Press, 1st edition (1996)

[8] M. Subbarao, Addition chains–some results and problems, in Number Theory and Applications, R.A. Mollin, ed., Kluwer
Academic Publishers, Dordrecht, 555–574 (1989).

[9] K. Fathy, Hazem Bahig, A. Ragab, A Fast Parallel Modular Exponentiation Algorithm. Arab J Sci Eng 43, 903-911
(2018)

[10] Hazem Bahig, A fast optimal parallel algorithm for a short addition chain. The Journal of Supercomputing 74(1):
324–333 (2018)

[11] H. Altman, Integer Complexity, Addition Chains, and Well-Ordering. Ph.D. dissertation, University of Michigan, (2014)

[12] T. Saranurak, G. Jindal, Subtraction makes computing integers faster. CoRR abs/1212.2549 (2012)

[13] H. Bahig, Improved Generation of Minimal Addition Chains. Computing 78(2): 161-172 (2006)

[14] H. Bahig, Star reduction among minimal length addition chains. Computing 91(4): 335-352 (2011)

[15] H. Bahig and Hazem Bahig, A new strategy for generating shortest addition sequences. Computing 91(3): 285-306
(2011)

[16] E. Thurber, Efficient generation of minimal length addition chains. SIAM J Comput 28: 1247-1263(1999)

[17] A. Flammenkamp, Integers with a small number of minimal addition chains, Discrete Math. 205, 221–227 (1999)

[18] E. Thurber, Addition chains–an erratic sequence. Discrete Math. 122, 287–305 (1993)

521

